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THE C-COMPLEX CLASP NUMBER OF LINKS

JONAH AMUNDSEN, ERIC ANDERSON, CHRISTOPHER WILLIAM DAVIS AND DANIEL GUYER

In the 1980s, Daryl Cooper introduced the notion of a C-complex (or clasp-complex) bounded by a link
and explained how to compute signatures and polynomial invariants using a C-complex. Since then, this
has been extended by works of Cimasoni, Florens, Mellor, Melvin, Conway, Toffoli, Friedl, and others
to compute other link invariants. Informally, a C-complex is a union of surfaces which are allowed to
intersect each other in clasps. We study the minimal number of clasps amongst all C-complexes bounded
by a fixed link L . This measure of complexity is related to the number of crossing changes needed to
reduce L to a boundary link. We prove that if L is a 2-component link with nonzero linking number,
then the linking number determines the minimal number of clasps amongst all C-complexes. In the case
of 3-component links, the triple linking number provides an additional lower bound on the number of
clasps in a C-complex.

1. Introduction

There is a generalization of a Seifert surface to the setting of links called a C-complex or clasp-complex
originally defined by Cooper [4; 3]. Informally, if L = L1 ∪ · · · ∪ Ln is an n-component link, then a
C-complex for L is a collection of Seifert surfaces F = F1 ∪ · · · ∪ Fn for the components of L which are
allowed to intersect, but only in clasps. A local picture of a clasp appears in Figure 1. Figures 3 and 4
depict examples of C-complexes. The precise definition of a C-complex appears later in Definition 8.

If a C-complex F for L has no clasp intersections, then F is a collection of disjoint Seifert surfaces
for the components of L . In this case L is called a boundary link and F is called a boundary surface.
Thus, the number of clasps in a C-complex can be used to measure how far F is from being a boundary
surface and so how far L is from being a boundary link. In this paper we shall study the minimal number
of clasps amongst all C-complexes bounded by L . This should not be confused with the clasp number
introduced by Shibuya in [10].

Definition 1. For a link L we define the clasp number of L , denoted by C(L), to be the minimum number
of clasps amongst all C-complexes bounded by L .

For a 2-component link L = L1 ∪ L2 and any C-complex F = F1 ∪ F2 bounded by L , the linking
number, denoted by lk(L1, L2), can be computed as the number of positive clasps in F minus the number
of negative. It follows that C(L)≥ |lk(L1, L2)|. Our first main result is that for most 2-component links,
C(L)= |lk(L1, L2)|.
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Figure 1. A positive clasp, left, and a negative clasp, right.

Theorem 2. Let L = L1 ∪ L2 be a 2-component link. If lk(L1, L2) 6= 0, then C(L) = |lk(L1, L2)|. If
lk(L1, L2)= 0, then C(L) ∈ {0, 2}.

We mentioned that the number of clasps in a C-complex for L measures how far L is from being a
boundary link. We take a moment and make that explicit. Any link can be reduced to a boundary link
by a finite sequence of crossing changes. Indeed, that boundary link can be taken to be the unlink. Let
B(L) be the minimum number of crossing changes needed to reduce L to a boundary link. If F is a
C-complex for L admitting C(L) total clasps, then by changing a crossing at each clasp, as in Figure 2,
one reduces F to a boundary surface and so L to a boundary link. Therefore

B(L)≤ C(L).

On the other hand, changing a crossing of L changes at most one linking number of L and that by at most 1.
As any boundary link has vanishing pairwise linking numbers, we conclude that if L = L1 ∪ · · · ∪ Ln is
an n-component link, then ∑

1≤i< j≤n

|lk(L i , L j )| ≤ B(L).

By Theorem 2, if L = L1∪L2 has only two components and lk(L1, L2) 6= 0, then C(L)= |lk(L1, L2)|.
Thus, in this case we have |lk(L1, L2)| ≤ B(L) ≤ C(L) = |lk(L1, L2)|. We arrive at the following
corollary.

Corollary 3. Let L = L1 ∪ L2 be a 2-component link. If lk(L1, L2) 6= 0, then there exists a sequence
of |lk(L1, L2)| crossing changes reducing L to a boundary link. If lk(L1, L2) = 0, then either L is a
boundary link or there exists a sequence of at most 2 crossing changes reducing L to a boundary link.

Example 4. In order to illustrate Theorem 2 and Corollary 3, consider the link of Figure 3. The depicted
C-complex has three clasps. Since lk(L1, L2)= 1, there exists a C-complex bounded by L with a single
clasp and, perhaps more surprisingly, there exists a single crossing change reducing L to a boundary link.

Figure 2. A clasp, left, and a crossing change removing the clasp, right.
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Figure 3. A 2-component link with linking number 1.

According to Theorem 2, the linking number completely determines the clasp number of 2-component
links with nonzero linking number, and the clasp number of 2-component links with linking number zero
is bounded. This behavior does not extend to links of more than 2 components. In [8], Milnor introduced
a family of higher-order linking invariants. The first of these is called the triple linking number and is
denoted by µi jk . It is well defined when the pairwise linking numbers vanish and measures the linking
of the i-th, j-th, and k-th components. According to Mellor and Melvin [7], µi jk(L) can be computed
in terms of the clasps of a C-complex bounded by L . Thus, it comes as no surprise that µ123(L) can be
used to deduce a bound on C(L). We explicitly compute this bound.

Theorem 5. Let L = L1∪ L2∪ L3 be a 3-component link with vanishing pairwise linking numbers. Then
C(L)≥ 2d2

√
|µ123(L)|/3e. Here d−e is the ceiling function.

In order to illustrate the power of this theorem, we compute the clasp number of some examples. The
Borromean rings, denoted by BR, has µ123(BR)= 1 and so by Theorem 5, C(BR)≥ 4. The left-hand side
of Figure 4 depicts a C-complex bounded by BR with four clasps. Thus, C(BR)= 4. For any n ∈ N, the
generalized Borromean rings BRn of the right-hand side of Figure 4 bound a C-complex with 4n clasps,
and µ123(BRn)= n2. We do this computation in Example 10. As a consequence, we get the following
corollary, producing links with vanishing pairwise linking numbers and arbitrarily large clasp number.

Corollary 6. For any n ∈ N, consider the generalized Borromean rings BRn of Figure 4, right. The
pairwise linking numbers of BRn vanish and yet 2d2n/

√
3e ≤ C(L)≤ 4n.

BR1

BR3

BR2

. . .

. . .

...

BRn
1

BRn
3

BRn
2

Figure 4. A C-complex bounded by the Borromean rings, left, and a C-complex
bounded by the generalized Borromean rings BRn , right.
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In [7], Mellor and Melvin provided a means of computing µ123(L) in terms of any collection of
Seifert surfaces for the components of L . We shall use this result in the special case of a C-complex.
While a more complete description appears in Section 3, we recall it informally now. Start with a link
L= L1∪L2∪L3 bounding a C-complex F = F1∪F2∪F3, follow a component Lk of L , and record a word
wk(F) in x±1

1 , x±1
2 , x±1

3 capturing the order and sign of the clasps Lk encounters. Set ei j (wk(F)) ∈ Z to
be the signed count of the number of the xi appearing in wk before an x j . The triple linking number is
given by µ123(L)= e12(w3(F))+ e23(w1(F))+ e31(w2(F)).

A technical result we use in our proof of Theorem 5 is a new geometric strategy to compute ei j (w).
For any word w in letters x±1

1 , x±1
2 , x±1

3 and any i, j ∈ {1, 2, 3}, construct a piecewise linear curve γi j (w)

in R2 as follows. Start at the origin (0, 0). Each time you see an xi (respectively x−1
i , x j , x−1

j ) in w, travel
right (respectively left, up, down) a length of 1. The following reveals that ei j (w) is the area enclosed
by this curve.

Proposition 7. Let w =
∏m

n=1 xεn
in

be a word in letters x±1
1 , x±1

2 , x±1
3 . For any i 6= j ∈ {1, 2, 3},

ei j (w)=

∮
γi j (w)

x dy.

Additionally, if γi j (w) is a simple closed curve with counterclockwise orientation, then ei j (w) is the area
enclosed by γi j (w).

1.1. Questions. Theorem 2 states that any 2-component link with nonzero linking number has a C-
complex admitting precisely |lk(L1, L2)| clasps. However, our proof makes no attempt to minimize the
first Betti number of the C-complex, which is the measure of complexity most directly accessible using
the tools like Alexander polynomial or signature [1; 2]. We pose the following question.

Question 1. Suppose that L = L1 ∪ L2 is a 2-component link with nonzero linking number. Amongst
all C-complexes F bounded by L admitting precisely |lk(L1, L2)| clasps, what is the minimal value
for β1(F)? Is it possible to simultaneously minimize the number of clasps in F as well as β1(F)?

Theorem 2 almost completely determines C(L) for 2-component links. Theorem 5 concludes that
C(L)≥ 2d2

√
|µ123(L)|/3e for three component links with vanishing linking numbers. One might ask if

equality holds.

Question 2. Let L = L1 ∪ L2 ∪ L3 be a 3-component link with vanishing pairwise linking numbers and
µ123(L) 6= 0. Does it follow that C(L)= 2d2

√
|µ123(L)|/3e?

More specifically, for any n ∈N, consider the generalized Borromean rings BRn of the right-hand side
of Figure 4. Corollary 6 concludes that 2d2n/

√
3e≤C(BRn)≤4n. When n=2 this gives 6≤C(BR2)≤8.

Question 3. What is C(BRn)?

Additionally, one might ask about the clasp number of links of more than three components.

Question 4. Let n ≥ 3 and let L = L1∪· · ·∪ Ln be an n-component link with vanishing pairwise linking
numbers and µi jk(L) 6= 0 for some i, j, k. Is there a formula for C(L) in terms of the set of all triple
linking numbers of L?
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In the case of links of more than 2 components with nonvanishing pairwise linking numbers, the triple
linking numbers are not well defined. Instead, by [5, Theorem 1.1] there is a total triple linking number
recording all of the individual triple linking numbers taking values in the quotient of Z(

n
3) by a subgroup

depending on the individual linking numbers [5, Definition 5.7].

Question 5. Let L = L1 ∪ · · · ∪ Ln be an n-component link with either a nonvanishing pairwise linking
number or nonvanishing total triple linking number. Is there a formula for C(L) in terms of the linking
numbers and the total triple linking number?

2. C-complexes and the proof of Theorem 2

Throughout this paper all knots are smoothly embedded curves in S3, and all surfaces are smoothly
embedded in S3, compact, connected, and oriented. A smoothly embedded compact oriented surface
with boundary equal to a knot K is called a Seifert surface for K . We begin by recalling the formal
definition of a C-complex.

Definition 8. [2, Section 2.1] Given a link L = L1∪· · ·∪ Ln , a C-complex for L is a collection of Seifert
surfaces F = F1 ∪ · · · ∪ Fn for the components of L , which may intersect transversely with the following
constraints:

(1) For each i, j ∈ {1, . . . , n}, Fi ∩ F j is a union of simple arcs running from a point in L i = ∂Fi to a
point in L j = ∂F j . These arcs are called clasps; see Figure 1.

(2) Fi ∩ F j ∩ Fk =∅ for any three distinct i, j, k.

The fact that Fi and F j intersect transversely implies that at every p ∈ L i ∩ F j , the tangent vector
to L i does not lie in the tangent plane of F j . Since Fi is oriented, there is a preferred choice of normal
vector to Fi at every point in Fi . We call a point of intersection p ∈ L i ∩ F j positive if the dot product of
the tangent vector to L i at p with the normal vector to F j at p is positive. If the dot product is negative,
then the point of intersection is called negative.

A clasp between Fi and F j has endpoints given by a point in L i ∩ F j and a point in L j ∩ Fi . We
call a clasp positive (or negative, respectively) if these points of intersection are positive (or negative,
respectively). Local pictures of a positive and a negative clasp appear in Figure 1.

For the remainder of this section we restrict to the case that the number of components is n = 2. If F2

is any Seifert surface for L2, then the linking number lk(L1, L2) is given by counting with sign how
many times L1 intersects F2; see [9, Section 5D]. If F1 ∪ F2 is a C-complex for L1 ∪ L2, then this is
precisely the same as the signed count of the clasps shared by F1 and F2. We are now ready to prove
Theorem 2.

Theorem 2. Let L = L1 ∪ L2 be a 2-component link. If lk(L1, L2) 6= 0, then C(L) = |lk(L1, L2)|. If
lk(L1, L2)= 0, then C(L) ∈ {0, 2}.

Proof of Theorem 2. Let L = L1∪ L2 be a 2-component link and F = F1∪ F2 be any C-complex bounded
by L . Let c+ be the number of positive clasps in F and c− be the number of negative clasps. By the
triangle inequality,

|lk(L1, L2)| = |c+− c−| ≤ c++ c−,
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Figure 5. Left, a knot L2 intersecting an oriented surface F1 in a positive point of
intersection followed by a negative point of intersection. Right, adding a tube to F1

removes both intersection points.

so that F has at least |lk(L1, L2)| many clasps. As F is an arbitrary C-complex bounded by L , we get
that C(L) ≥ |lk(L1, L2)|. Thus, we need only to show that C(L) ≤ |lk(L1, L2)|. Since C(L) is the
minimum number of clasps amongst all C-complexes bounded by L , it suffices to exhibit a C-complex
with precisely |lk(L1, L2)| clasps or 2 clasps in the case that lk(L1, L2)= 0. Without loss of generality
we shall assume that lk(L1, L2)≥ 0.

We begin by producing a pair of Seifert surfaces F1 and F2 for L1 and L2 which have no negative
clasps in their intersection but which may have some non-clasp intersections. Let F1 be any Seifert
surface for L1. Suppose F1 is transverse to L2 and F1 ∩ L2 contains n+ positive points of intersection
and n− points of negative intersection. If both n+ and n− are nonzero, then as you follow L2 you will at
some point encounter a positive point of intersection with F1 followed by a negative, as in the left side
of Figure 5. By adding a tube to F1 as in the right side of Figure 5, we see a new Seifert surface bounded
by L1, which intersects L2 in two fewer points. Iterating, we see a Seifert surface for L1, which we
persist in calling F1, bounded by L1, which either intersects L2 in only positive points or only negative
points of intersection. Thus, n+ = 0 or n− = 0. Since n+ − n− = lk(L1, L2) ≥ 0 by assumption, we
see that n− = 0. By the same process, we find a Seifert surface F2 which intersects L1 in only positive
points of intersection.

There is no reason to expect that F1 ∪ F2 is a C-complex. After a small isotopy of F1 and F2 we may
assume that they intersect transversely. Therefore F1 ∩ F2 consists of a collection of

• arcs with one endpoint in L1 = ∂F1 and the other in L2 = ∂F2,

• arcs with both endpoints in L1 = ∂F1 or both endpoints in L2 = ∂F2, and

• simple closed curves interior to F1 and interior to F2.

Figure 6. A positive clasp intersection, left, a ribbon intersection, center, and a loop
intersection, right.
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Figure 7. Left, a pair of surfaces sharing a clasp and a loop intersection together with
an arc running from the clasp to the loop. Center, performing a finger move to push the
clasp intersection closer to the loop. Right, tubing the clasp into the loop results in a
single clasp intersection.

We call these types of intersections clasps, ribbons, and loops, respectively. Examples of each appear
in Figure 6. Since F1 has no negative points of intersection with L2, there can be no negative clasps
in F1∩F2. The endpoints of a ribbon intersection are intersection points between F1 and L2 (or F2 and L1)
with opposite signs. Since we have already arranged that there are no negative points of intersection, there
can be no ribbon intersections in F1 ∩ F2. Thus, F1 ∩ F2 consists only of loops and positive clasps. It
remains to further modify F1 and F2 to eliminate all loops.

Assume that lk(L1, L2) 6= 0, so that there is at least one clasp in F1 ∩ F2. Let c be one such clasp.
Suppose that there exists a loop intersection ` ⊆ F1 ∩ F2. By taking an outermost loop in F2 we may
arrange that there exists an arc α in F2 running from a point in c to a point in `. Moreover, we may assume
that α connects two points pushed off from F1 in the same normal direction. Figure 7 reveals how one may
add a tube to F1 following α to combine c and ` into a single simple arc. This arc has one endpoint in L1

and the other in L2. In other words, it is a clasp. Thus, we have reduced the number of loop intersections
by 1 and preserved the number of clasp intersections. Iterating, we eliminate all loop intersections and
produce a C-complex for L = L1 ∪ L2 with number of clasps equal to lk(L1, L2), as claimed.

In the case that the linking number is zero, F1 ∩ F2 contains no clasps. If F1 ∩ F2 also has no loops,
then F1 ∪ F2 is a C-complex with no clasps and C(L)= 0. Otherwise, modify F1 ∪ F2 as in Figure 8 to
add a positive and a negative clasp. Now we use the move of Figure 7 just as in the previous paragraph
to remove all loop intersections and produce a C-complex with precisely 2 clasps, so 0≤ C(L)≤ 2. In
order to see that C(L) cannot be 1, notice that since c+− c− = lk(L1, L2)= 0, it must be that c+ = c−.
In particular, F has an even number of clasps. This completes the proof. �

Before we begin our analysis of the triple linking number and links of three or more components, we
take a moment and explain why the proof of Theorem 2 fails for links of three or more components. One
may run the argument of Theorem 2 on a 3-component link L1 ∪ L2 ∪ L3 in order to produce Seifert

Figure 8. Modifying a C-complex by inserting two canceling clasps.
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surfaces F1, F2, and F3 so that for all i, j ∈ {1, 2, 3}, Fi ∩ F j consists of only positive or only negative
clasps, or when lk(L i , L j )= 0 consists of a single positive and a single negative clasp. However, there
is no reason for F1 ∩ F2 ∩ F3 to be empty, as is required of a C-complex. Indeed, if L has vanishing
linking numbers and µ123(L) is large, then Theorem 5 implies that there is no way to remove these triple
intersections without introducing a large number of clasps.

3. Triple linking numbers via clasps and polyominos

In this section we recall an invariant of links called the triple linking number and provide a formula in
terms of the area of a polyomino. A polyomino is a region of R2 consisting of a union of closed unit
squares with vertices at points in Z2.

In [7] Mellor and Melvin produce a formula for the triple linking number from any union of Seifert
surfaces for the components of L . We shall recall it in the special case of a C-complex. Let L =
L1∪· · ·∪ Ln be an n-component link and F = F1∪· · ·∪ Fn be a C-complex bounded by L . We associate
to each k = 1, . . . , n a word wk(F) called a clasp word, as follows. Pick a basepoint pk on Lk and
follow Lk in the positive direction starting at pk . Record an x j whenever Lk crosses through F j at a
positive clasp and x−1

j when Lk crosses F j at a negative clasp. Let ei j (wk(F)) be given by counting with
sign how often in wk(F) the symbol xi appears before x j . More formally, if wk(F)=

∏m
v=1 xεviv , then

(1) ei j (wk(F))=
m∑
v=1

v∑
u=1

δ(iu, i)δ(iv, j)εuεv,

where we have used the Kronecker δ,

δ(a, b)=
{

1 if a = b,
0 otherwise.

We encourage the reader to take a moment and use this definition to compute e12(x1x2x−1
1 x−1

2 )= 1. The
triple linking number is given by

µi jk(L)= ei j (wk(F))+ e jk(wi (F))+ eki (w j (F)).

When L is a link with vanishing pairwise linking numbers, µi jk(L) is independent of the choice of F
and of the choice of basepoints.

Example 9. For the sake of clarity, we provide an example computing the triple linking number of the
Borromean rings BR= BR1 ∪BR2 ∪BR3 using the C-complex F of Figure 4.

• Following BR1 starting at the arrow we encounter, in order, a negative clasp with F3, a positive
clasp with F2, a positive clasp with F3 and a negative clasp with F2. Therefore,

w(F1)= x−1
3 x2x3x−1

2 .

Similarly, w(F2)= x−1
1 x1 and w(F3)= x−1

1 x1.

• Count with sign how many times you see x2 before x3 in w(L1) to get e23(w1(F))=+1. Similarly,
e12(w(F3))= e31(w(F2))= 0.
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xi

x j

xi
x j

x−1
ix−1

i

x−1
j

x−1
j

Figure 9. The curve γi j (w) associated to the word w = xi x j xi x j x−2
i x−2

j , together with
the region γi j (w) encloses.

• The triple linking number is given by summing,

µ123(BR)= e12(w3(F))+ e23(w1(F))+ e31(w2(F))= 1.

Our next goal is the statement and proof of Proposition 7, which computes ei j (wk(F)) in terms of
some curve γi j (wk(F)) in the plane. We begin by explaining the construction of γi j (wk(F)). Let w be
any word in the letters x±1

1 , . . . , x±1
n . We give a procedure which associates to w a curve in the plane.

Start at the point (0, 0) ∈ R2. Each time you encounter xi in w travel right a length of 1. When x−1
i

is encountered travel left. When x j or x−1
j is encountered travel up or down, respectively. Call the

resulting curve γi j (w). For instance, when w = xi x j xi x j x−2
i x−2

j , the curve γi j (w) appears in Figure 9.
The assiduous reader will now compute ei j (w)= 3 using equation (1), which suggestively agrees with
the area of the region enclosed by γi j (w).

We are now ready to prove Proposition 7.

Proposition 7. Let w =
∏m
v=1 xεviv be a word in letters x±1

1 , . . . , x±1
n . For any i 6= j ∈ {1, . . . , n},

ei j (w)=

∮
γi j (w)

x dy.

Additionally, if γi j (w) is a simple closed curve with counterclockwise orientation, then ei j (w) is the area
enclosed by γi j (w).

Proof of Proposition 7. Let w =
∏m
v=1 xεviv be a word in the letters x±1 , . . . , x±1

n . Let |w| = m be the
length of w. Then γi j (w) consists of a concatenation of |w| many curves, γ 1

i j (w), . . . , γ
m
i j (w), where

γ vi j (w) is constant if iv /∈ {i, j} and is a length 1 line segment traveling in a cardinal direction otherwise.
Therefore, the integral in question breaks up as∮

γi j (w)

x dy =
m∑
v=1

(∮
γ vi j (w)

x dy
)
.

If iv 6= j then γ vi j (w) is either constant or parametrizes a horizontal line segment. In either case dy = 0 so
that

∮
γ vi j (w)

x dy= 0. If iv = j then γ vi j (w) is a vertical line segment parametrized by γ vi j (t)= (x, t ·εv+c)
with x and c constants and t running from 0 to 1. In particular, dy = εv dt . The fixed x-coordinate over
which this vertical line sits is the signed count of u < v with iu = i ,

x =
v∑

u=1

δ(iu, i)εu .
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Thus, in the case that iv = j , we have∮
γ vi j (w)

x dy =
∫ 1

0
x · εv dt = x · εv =

v∑
u=1

δ(iu, i)εuεv.

Combining the cases iv = j and iv 6= j , we see that for all v,∮
γ vi j (w)

x dy = δ(iv, j)
v∑

u=1

δ(iu, i)εuεv.

Summing over all values of v, ∮
γi j (w)

x dy =
m∑
v=1

δ(iv, j)
v∑

u=1

δ(iu, i)εuεv.

An application of the distributive law reduces this to the definition of ei j (w) appearing in equation (1).
This completes the proof of the first claim.

The second claim follows from a standard application of Green’s theorem. �

Example 10. We now spare a moment for a computation. For any n ∈ N, consider the generalized
Borromean rings BRn of Figure 4. Using the C-complex of the right-hand side of Figure 4 we get clasp
words

w1(F)= x−n
3 xn

2 xn
3 x−n

2 , w2(F)= xn
1 x−n

1 , w2(F)= (x1x−1
1 )n.

While one might now use equation (1) to directly compute e12(w3), e23(w1), and e31(w2), we shall use
Proposition 7. The curve γ23(w1(F)) traces a counterclockwise n× n square so that e23(ω1)= n2. The
curve γ31(w2(F)) lies in the vertical line x = 0 so that e31(w2(F))= 0. Finally, γ23(w1(F)) lies in the
horizontal line y = 0 so that e12(w3(F))= 0. Therefore, µ123(BRn)= n2.

4. The proof of Theorem 5

We now turn our attention to a lower bound on the number of clasps in a C-complex in terms of the triple
linking number. Notice that the curve γi j (w(Lk)) of Section 3 has length equal to the number of clasps
in Fk ∩ Fi plus the number of clasps in Fk ∩ F j . By Proposition 7,

∮
γi j (w)

x dy = ei j (w(Lk)). Thus, we
begin the proof of Theorem 5 by studying how

∮
γ

x dy provides a lower bound on the length of γ .
For the lemma below, a polyomino curve is a closed curve in R2 given by a concatenation of straight

lines of length 1 between points in Z2. The length of a curve γ is denoted by ‖γ ‖.

Lemma 11. Let γ be a polyomino curve in R2. Let A =
∮
γ

x dy. Then ‖γ ‖ ≥ 2d2
√
|A|e.

Proof. Let γ be a polyomino curve in R2 and let A =
∮
γ

x dy. If γ is a simple closed curve, then a
standard application of Green’s theorem shows that

|A| =
∫∫

A
1 dx dy

is the area of the region R enclosed by γ . In [6], Harary and Harborth showed that the minimum
perimeter amongst all polyominos with a fixed area |A| is given by 2d2

√
|A|e. As ‖γ ‖ is the perimeter

of A, ‖γ ‖ ≥ 2d2
√
|A|e, as the lemma claims.
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It remains to deal with the case that γ is not simple. Recall that by assumption, γ consists of a concate-
nation of vertical and horizontal line segments of length 1. Denote the rightward pointing horizontal line
segments as γ r

1 (t), . . . , γ
r
h (t), the leftward pointing as γ `1 (t), . . . , γ

`
h (t), the upward as γ u

1 (t), . . . , γ
u
v (t)

and the downward as γ d
1 (t), . . . , γ

d
v (t). As γ is a closed curve, the number of rightward and leftward

pointing segments must be equal to each other, as must be the number of upward and downward pointing
segments.

Up to a translation and a reparametrization preserving ‖γ ‖ and
∮
γ

x dy, we may assume that γ is
parametrized by some (x(t), y(t)) such that the minimum value of x(t) is x(0)= 0. It follows for all t
that 0 ≤ x(t) ≤ h, where h is the number of rightward-pointing length 1 line segments in γ . Breaking
the integral up as a sum,

(2) A =
∮
γ

x dy =
v∑

i=1

∮
γ u

i

x dy+
v∑

i=1

∮
γ d

i

x dy+
h∑

i=1

∮
γ r

i

x dy+
h∑

i=1

∮
γ `i

x dy.

Since γ `i and γ r
i are horizontal line segments, they each have dy = 0, so that

∮
γ r

i
x dy =

∮
γ `i

x dy = 0.
Since γ u

i is an upward-pointing length 1 line segment, we may parametrize γ u
i as (x, t+c) where x and c

are constant and t runs from 0 to 1. Therefore, dy = dt and 0 ≤ x ≤ h. Thus,
∮
γ u

i
x dy =

∫ 1
0 x dt = x

and in particular 0≤
∮
γ u

i
x dy ≤ h. Similarly, −h ≤

∮
γ d

i
x dy ≤ 0. Therefore,

0≤
v∑

i=1

∮
γ u

i

y dx ≤ h · v and − h · v ≤
v∑

i=1

∮
γ d

i

y dx ≤ 0.

Applying these bounds to the rightmost expression in (2) we see that −h ·v ≤ A≤ h ·v, so that |A| ≤ h ·v.
Let R be an h× v rectangle and let r be the curve traversing its boundary counterclockwise. As r is

made up of the same number of length 1 line segments as γ , ‖γ ‖ = ‖r‖. Since R is a polyomino of
area h · v, [6] applies and ‖r‖ ≥ 2d2

√
h · ve. Summarizing,

‖γ ‖ = ‖r‖ ≥ 2d2
√

h · ve ≥ 2d2
√
|A|e.

This completes the proof. �

If w =
∏m
v=1 xεviv is a word in x±1

1 , . . . , x±1
n for which the signed counts of the xi and the x j are both

zero, then ‖γi j (w)‖ is the same as the length of the word w after deleting all letters other than x±1
i

and x±1
j , while ei j (w)=

∮
γi j (w)

y dx by Proposition 7. Thus, Lemma 11 has the following corollary.

Corollary 12. Let w =
∏m

n=1 xεn
in

be a word in x±1
1 , . . . , x±1

n . Fix some i 6= j ∈ {1, . . . , n} and assume
the signed counts of the xi and the x j are both zero. If ei j (w)= A, then |w| ≥ 2d2

√
|A|e.

We are now ready to prove Theorem 5, which gives a lower bound on C(L) in terms of µi jk(L).

Theorem 5. Let L = L1∪ L2∪ L3 be a 3-component link with vanishing pairwise linking numbers. Then
C(L)≥ 2d2

√
|µ123(L)|/3e.

Proof. Let L be a 3-component link with vanishing pairwise linking numbers and F be a C-complex
bounded by L . Let C(F) be the number of clasps between the components of F . Let w1 = w1(F),
w2 = w2(F) and w3 = w3(F) be the resulting clasp words. Each clasp corresponds to a letter in two of
these words, and so

2C(F)= |w1| + |w2| + |w3|.
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Let e1 = e23(w1), e2 = e31(w2), and e3 = e12(w3). Then µ123(L)= e1+ e2+ e3. Assume without loss
of generality that |e1| ≤ |e2| ≤ |e3|. Then it must be that |e3| ≥ |µ123(L)|/3. Corollary 12 concludes that
|w3| ≥ 2d2

√
|e3|e ≥ 2d2

√
|µ123(L)|/3e.

Now, each letter of w3 corresponds to either a clasp in F3 ∩ F1 or a clasp in F3 ∩ F2. Each of these
clasps produces a letter in w1 or in w2. As a consequence |w3| ≤ |w1| + |w2|. Putting this together,

2C(F)= |w1| + |w2| + |w3| ≥ 2|w3| ≥ 4d2
√
|µ123(L)|/3e.

The proof is now completed by dividing by 2. �
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