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THE C-COMPLEX CLASP NUMBER OF LINKS

JONAH AMUNDSEN, ERIC ANDERSON, CHRISTOPHER WILLIAM DAVIS AND DANIEL GUYER

In the 1980s, Daryl Cooper introduced the notion of a C-complex (or clasp-complex) bounded by a link
and explained how to compute signatures and polynomial invariants using a C-complex. Since then, this
has been extended by works of Cimasoni, Florens, Mellor, Melvin, Conway, Toffoli, Friedl, and others
to compute other link invariants. Informally, a C-complex is a union of surfaces which are allowed to
intersect each other in clasps. We study the minimal number of clasps amongst all C-complexes bounded
by a fixed link L. This measure of complexity is related to the number of crossing changes needed to
reduce L to a boundary link. We prove that if L is a 2-component link with nonzero linking number,
then the linking number determines the minimal number of clasps amongst all C-complexes. In the case
of 3-component links, the triple linking number provides an additional lower bound on the number of
clasps in a C-complex.

1. Introduction

There is a generalization of a Seifert surface to the setting of links called a C-complex or clasp-complex
originally defined by Cooper [4; 3]. Informally, if L =L;U---U L, is an n-component link, then a
C-complex for L is a collection of Seifert surfaces F = F; U - - - U F}, for the components of L which are
allowed to intersect, but only in clasps. A local picture of a clasp appears in Figure 1. Figures 3 and 4
depict examples of C-complexes. The precise definition of a C-complex appears later in Definition 8.

If a C-complex F for L has no clasp intersections, then F is a collection of disjoint Seifert surfaces
for the components of L. In this case L is called a boundary link and F is called a boundary surface.
Thus, the number of clasps in a C-complex can be used to measure how far F is from being a boundary
surface and so how far L is from being a boundary link. In this paper we shall study the minimal number
of clasps amongst all C-complexes bounded by L. This should not be confused with the clasp number
introduced by Shibuya in [10].

Definition 1. For a link L we define the clasp number of L, denoted by C (L), to be the minimum number
of clasps amongst all C-complexes bounded by L.

For a 2-component link L = L; U L, and any C-complex F = F| U F, bounded by L, the linking
number, denoted by 1k(L, L), can be computed as the number of positive clasps in F' minus the number
of negative. It follows that C(L) > |lk(L, L»)|. Our first main result is that for most 2-component links,
C(L) = [Ik(Ly, L2)|.
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Figure 1. A positive clasp, left, and a negative clasp, right.

Theorem 2. Let L = L U Ly be a 2-component link. If 1k(L{, L) # 0, then C(L) = |Ik(L, L»)|. If
Ik(Ly, Ly) =0, then C(L) € {0, 2}.

We mentioned that the number of clasps in a C-complex for L measures how far L is from being a
boundary link. We take a moment and make that explicit. Any link can be reduced to a boundary link
by a finite sequence of crossing changes. Indeed, that boundary link can be taken to be the unlink. Let
B(L) be the minimum number of crossing changes needed to reduce L to a boundary link. If F is a
C-complex for L admitting C (L) total clasps, then by changing a crossing at each clasp, as in Figure 2,
one reduces F' to a boundary surface and so L to a boundary link. Therefore

B(L) <C(L).

On the other hand, changing a crossing of L changes at most one linking number of L and that by at most 1.
As any boundary link has vanishing pairwise linking numbers, we conclude thatif L=L;U---UL, is
an n-component link, then
> IK(Li, Ly)| < B(L).
I<i<j<n

By Theorem 2, if L = LU L, has only two components and 1k(L{, Ly) # 0, then C(L) = |Ik(L1, L3)|.
Thus, in this case we have |Ik(L, L,)| < B(L) < C(L) = |Ik(Ly, L)|. We arrive at the following
corollary.

Corollary 3. Let L = L1 U Ly be a 2-component link. If Ik(Ly, Ly) # 0, then there exists a sequence
of |Ik(Ly, Ly)| crossing changes reducing L to a boundary link. If 1k(L, Ly) = 0, then either L is a
boundary link or there exists a sequence of at most 2 crossing changes reducing L to a boundary link.

Example 4. In order to illustrate Theorem 2 and Corollary 3, consider the link of Figure 3. The depicted
C-complex has three clasps. Since Ik(Lj, Ly) = 1, there exists a C-complex bounded by L with a single
clasp and, perhaps more surprisingly, there exists a single crossing change reducing L to a boundary link.

Figure 2. A clasp, left, and a crossing change removing the clasp, right.
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Figure 3. A 2-component link with linking number 1.

According to Theorem 2, the linking number completely determines the clasp number of 2-component
links with nonzero linking number, and the clasp number of 2-component links with linking number zero
is bounded. This behavior does not extend to links of more than 2 components. In [8], Milnor introduced
a family of higher-order linking invariants. The first of these is called the triple linking number and is
denoted by p;j. It is well defined when the pairwise linking numbers vanish and measures the linking
of the i-th, j-th, and k-th components. According to Mellor and Melvin [7], u;jx (L) can be computed
in terms of the clasps of a C-complex bounded by L. Thus, it comes as no surprise that (£123(L) can be
used to deduce a bound on C(L). We explicitly compute this bound.

Theorem 5. Let L = LU Ly U L3 be a 3-component link with vanishing pairwise linking numbers. Then

C(L) = 212+/|it123(L)|/3]. Here [—] is the ceiling function.

In order to illustrate the power of this theorem, we compute the clasp number of some examples. The
Borromean rings, denoted by BR, has (1123(BR) =1 and so by Theorem 5, C(BR) > 4. The left-hand side
of Figure 4 depicts a C-complex bounded by BR with four clasps. Thus, C(BR) =4. For any n € N, the
generalized Borromean rings BR” of the right-hand side of Figure 4 bound a C-complex with 4n clasps,
and f11o3(BR") = n%. We do this computation in Example 10. As a consequence, we get the following
corollary, producing links with vanishing pairwise linking numbers and arbitrarily large clasp number.

Corollary 6. For any n € N, consider the generalized Borromean rings BR" of Figure 4, right. The
pairwise linking numbers of BR" vanish and yet 2[2n/~/31 < C(L) < 4n.

BR’

BR}

BR;

Figure 4. A C-complex bounded by the Borromean rings, left, and a C-complex
bounded by the generalized Borromean rings BR", right.
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In [7], Mellor and Melvin provided a means of computing w23(L) in terms of any collection of
Seifert surfaces for the components of L. We shall use this result in the special case of a C-complex.
While a more complete description appears in Section 3, we recall it informally now. Start with a link
L =LULyULj3bounding a C-complex F = FU F,U F3, follow a component L of L, and record a word
wi(F) in xlil, xéﬁl, xgcl capturing the order and sign of the clasps Ly encounters. Set e;; (wi(F)) € Z to
be the signed count of the number of the x; appearing in wy before an x;. The triple linking number is
given by p123(L) = ep2(w3(F)) + ex3 (w1 (F)) + ez (wa(F)).

A technical result we use in our proof of Theorem 5 is a new geometric strategy to compute e;; (w).
For any word w in letters xlﬂ , x;] , )63jEl and any i, j € {1, 2, 3}, construct a piecewise linear curve y;;(w)
in R? as follows. Start at the origin (0, 0). Each time you see an x; (respectively X, Lx js xj_l) in w, travel
right (respectively left, up, down) a length of 1. The following reveals that ¢;; (w) is the area enclosed

by this curve.

Proposition 7. Let w =[],_, xfn" be a word in letters xlil, xgcl, xéﬁl. Foranyi # je{l,2,3},

ejj(w) =‘¢. xdy.
vij(w)

Additionally, if y;j(w) is a simple closed curve with counterclockwise orientation, then e;;(w) is the area
enclosed by y;;(w).

1.1. Questions. Theorem 2 states that any 2-component link with nonzero linking number has a C-
complex admitting precisely |Ik(L, L)| clasps. However, our proof makes no attempt to minimize the
first Betti number of the C-complex, which is the measure of complexity most directly accessible using
the tools like Alexander polynomial or signature [1; 2]. We pose the following question.

Question 1. Suppose that L = L U L, is a 2-component link with nonzero linking number. Amongst
all C-complexes F bounded by L admitting precisely |lk(L, L)| clasps, what is the minimal value
for B1(F)? Is it possible to simultaneously minimize the number of clasps in F as well as 81 (F)?

Theorem 2 almost completely determines C (L) for 2-component links. Theorem 5 concludes that
C(L) > 2[2+/|it123(L)]/3] for three component links with vanishing linking numbers. One might ask if
equality holds.

Question 2. Let L = LU L, U L3 be a 3-component link with vanishing pairwise linking numbers and

ft123(L) # 0. Does it follow that C(L) = 2[2+/Ti123(L)1/31?

More specifically, for any n € N, consider the generalized Borromean rings BR" of the right-hand side
of Figure 4. Corollary 6 concludes that 2[2n/ ﬁ] <C(BR") <4n. When n =2 this gives 6 < C (BR?) <8.

Question 3. What is C(BR")?
Additionally, one might ask about the clasp number of links of more than three components.

Question 4. Letn >3 andlet L=L;U---UL, be an n-component link with vanishing pairwise linking
numbers and w;jx (L) # 0 for some i, j, k. Is there a formula for C(L) in terms of the set of all triple
linking numbers of L?
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In the case of links of more than 2 components with nonvanishing pairwise linking numbers, the triple
linking numbers are not well defined. Instead, by [5, Theorem 1.1] there is a total triple linking number
recording all of the individual triple linking numbers taking values in the quotient of z() by a subgroup
depending on the individual linking numbers [5, Definition 5.7].

Question 5. Let L =L;U-.-UL, be an n-component link with either a nonvanishing pairwise linking
number or nonvanishing total triple linking number. Is there a formula for C (L) in terms of the linking
numbers and the total triple linking number?

2. C-complexes and the proof of Theorem 2

Throughout this paper all knots are smoothly embedded curves in $3, and all surfaces are smoothly
embedded in S3, compact, connected, and oriented. A smoothly embedded compact oriented surface
with boundary equal to a knot K is called a Seifert surface for K. We begin by recalling the formal
definition of a C-complex.

Definition 8. [2, Section 2.1] Given a link L =L, U---UL,, a C-complex for L is a collection of Seifert
surfaces F' = Fy U---U F, for the components of L, which may intersect transversely with the following
constraints:

(1) Foreachi, j €{l,...,n}, F; N F; is a union of simple arcs running from a pointin L; =9dF; to a
point in L; = dF;. These arcs are called clasps; see Figure 1.

(2) F;NF; N F, =@ for any three distinct i, j, k.

The fact that F; and F; intersect transversely implies that at every p € L; N F;, the tangent vector
to L; does not lie in the tangent plane of F;. Since F; is oriented, there is a preferred choice of normal
vector to F; at every point in F;. We call a point of intersection p € L; N F; positive if the dot product of
the tangent vector to L; at p with the normal vector to F; at p is positive. If the dot product is negative,
then the point of intersection is called negative.

A clasp between F; and F; has endpoints given by a point in L; N F; and a point in L; N F;. We
call a clasp positive (or negative, respectively) if these points of intersection are positive (or negative,
respectively). Local pictures of a positive and a negative clasp appear in Figure 1.

For the remainder of this section we restrict to the case that the number of components is n = 2. If F;
is any Seifert surface for L,, then the linking number 1k(L, L;) is given by counting with sign how
many times L intersects F»; see [9, Section 5D]. If F; U F; is a C-complex for L; U L,, then this is
precisely the same as the signed count of the clasps shared by F; and F,. We are now ready to prove
Theorem 2.

Theorem 2. Let L = LU L be a 2-component link. If 1k(L1, Ly) # 0, then C(L) = |Ik(Ly, Ly)|. If
Ik(Ly, Ly) =0, then C(L) € {0, 2}.

Proof of Theorem 2. Let L = LU L, be a 2-component link and F = F; U F, be any C-complex bounded
by L. Let ¢4 be the number of positive clasps in F and c_ be the number of negative clasps. By the
triangle inequality,

Hk(L1, Lo)| =ley —c-| < cq+c—,
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Figure 5. Left, a knot L, intersecting an oriented surface F) in a positive point of
intersection followed by a negative point of intersection. Right, adding a tube to F}
removes both intersection points.

so that F has at least |Ik(L{, Ly)| many clasps. As F is an arbitrary C-complex bounded by L, we get
that C(L) > |lk(L1, Ly)|. Thus, we need only to show that C(L) < |Ik(Ly, L,)|. Since C(L) is the
minimum number of clasps amongst all C-complexes bounded by L, it suffices to exhibit a C-complex
with precisely |Ik(L1, L»)| clasps or 2 clasps in the case that Ik(L;, Ly) = 0. Without loss of generality
we shall assume that 1Ik(L{, L) > 0.

We begin by producing a pair of Seifert surfaces F; and F, for L; and L, which have no negative
clasps in their intersection but which may have some non-clasp intersections. Let F; be any Seifert
surface for L. Suppose F] is transverse to L, and F; N L, contains n positive points of intersection
and n_ points of negative intersection. If both n, and n_ are nonzero, then as you follow L, you will at
some point encounter a positive point of intersection with F| followed by a negative, as in the left side
of Figure 5. By adding a tube to F) as in the right side of Figure 5, we see a new Seifert surface bounded
by L, which intersects L, in two fewer points. Iterating, we see a Seifert surface for L, which we
persist in calling Fi, bounded by L, which either intersects L, in only positive points or only negative
points of intersection. Thus, ny =0 or n_ = 0. Since n,. —n_ =1k(Ly, Ly) > 0 by assumption, we
see that n_ = 0. By the same process, we find a Seifert surface F> which intersects L; in only positive
points of intersection.

There is no reason to expect that F; U F; is a C-complex. After a small isotopy of F; and F, we may
assume that they intersect transversely. Therefore F; N F, consists of a collection of

« arcs with one endpoint in L| = d F and the other in L, = 9 F>,
« arcs with both endpoints in L{ = d F or both endpoints in L, = 3 F5, and

« simple closed curves interior to F; and interior to F.

Figure 6. A positive clasp intersection, left, a ribbon intersection, center, and a loop
intersection, right.
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Figure 7. Left, a pair of surfaces sharing a clasp and a loop intersection together with
an arc running from the clasp to the loop. Center, performing a finger move to push the

clasp intersection closer to the loop. Right, tubing the clasp into the loop results in a
single clasp intersection.

We call these types of intersections clasps, ribbons, and loops, respectively. Examples of each appear
in Figure 6. Since F; has no negative points of intersection with L,, there can be no negative clasps
in F1N F,. The endpoints of a ribbon intersection are intersection points between F and L, (or F, and L)
with opposite signs. Since we have already arranged that there are no negative points of intersection, there
can be no ribbon intersections in F; N F,. Thus, F) N F, consists only of loops and positive clasps. It
remains to further modify F; and F, to eliminate all loops.

Assume that 1k(L, L) # 0, so that there is at least one clasp in F; N F;,. Let ¢ be one such clasp.
Suppose that there exists a loop intersection £ € F; N F>. By taking an outermost loop in F, we may
arrange that there exists an arc « in F, running from a point in ¢ to a point in £. Moreover, we may assume
that o connects two points pushed off from F] in the same normal direction. Figure 7 reveals how one may
add a tube to F; following o to combine ¢ and £ into a single simple arc. This arc has one endpoint in L
and the other in L;. In other words, it is a clasp. Thus, we have reduced the number of loop intersections
by 1 and preserved the number of clasp intersections. Iterating, we eliminate all loop intersections and
produce a C-complex for L = L U L, with number of clasps equal to 1k(L, L;), as claimed.

In the case that the linking number is zero, F; N F, contains no clasps. If F; N F, also has no loops,
then F; U F; is a C-complex with no clasps and C (L) = 0. Otherwise, modify F; U F; as in Figure 8 to
add a positive and a negative clasp. Now we use the move of Figure 7 just as in the previous paragraph
to remove all loop intersections and produce a C-complex with precisely 2 clasps, so 0 < C(L) <2. In
order to see that C(L) cannot be 1, notice that since ¢, —c_ =1k(Ly, Ly) = 0, it must be that ¢, = c_.
In particular, F has an even number of clasps. This completes the proof. (I

Before we begin our analysis of the triple linking number and links of three or more components, we
take a moment and explain why the proof of Theorem 2 fails for links of three or more components. One
may run the argument of Theorem 2 on a 3-component link L{ U L, U L3 in order to produce Seifert

Figure 8. Modifying a C-complex by inserting two canceling clasps.
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surfaces Fi, F;, and F3 so that for all i, j € {1, 2, 3}, F; N F; consists of only positive or only negative
clasps, or when 1k(L;, L;) = 0 consists of a single positive and a single negative clasp. However, there
is no reason for F; N F, N F3 to be empty, as is required of a C-complex. Indeed, if L has vanishing
linking numbers and p123(L) is large, then Theorem 5 implies that there is no way to remove these triple
intersections without introducing a large number of clasps.

3. Triple linking numbers via clasps and polyominos

In this section we recall an invariant of links called the triple linking number and provide a formula in
terms of the area of a polyomino. A polyomino is a region of R? consisting of a union of closed unit
squares with vertices at points in Z2.

In [7] Mellor and Melvin produce a formula for the triple linking number from any union of Seifert
surfaces for the components of L. We shall recall it in the special case of a C-complex. Let L =
Li{U---UL, be an n-component link and F = F; U- - -U F}, be a C-complex bounded by L. We associate
toeach k = 1,...,n a word wi(F) called a clasp word, as follows. Pick a basepoint p; on L; and
follow Ly in the positive direction starting at py. Record an x; whenever L, crosses through F; at a
positive clasp and xj_l when L crosses F; at a negative clasp. Let e;; (wy(F)) be given by counting with
sign how often in wy (F) the symbol x; appears before x ;. More formally, if wi(F) =[], x;*, then

v=1"i, >

(1) eij(We(F) =YY" 8(iu, (v, j)eucy,

v=1 u=1
where we have used the Kronecker §,

1 ifa=b,
0 otherwise.

8(a, b) = {

We encourage the reader to take a moment and use this definition to compute e12(x1x2x1_1x2_ 1) = 1. The
triple linking number is given by

wijk(L) = e;j(wi (F)) + e (w; (F)) + e (w; (F)).

When L is a link with vanishing pairwise linking numbers, u;;x (L) is independent of the choice of F
and of the choice of basepoints.

Example 9. For the sake of clarity, we provide an example computing the triple linking number of the
Borromean rings BR = BR; UBR, UBR3 using the C-complex F of Figure 4.

» Following BR; starting at the arrow we encounter, in order, a negative clasp with F3, a positive
clasp with F;, a positive clasp with F3 and a negative clasp with F>. Therefore,

-1 -1
w(F1) = x5 x2x3%, .

Similarly, w(F>) = x; 'x; and w(F3) = x; 'xp.

e Count with sign how many times you see x, before x3 in w(L1) to get ex3(w(F)) = +1. Similarly,
enn(w(F3)) = ez (w(F2)) =0.
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Figure 9. The curve y;;(w) associated to the word w = x;xjx;xx; 2x , together with
the region y;;(w) encloses.

 The triple linking number is given by summing,
m123(BR) = en(w3(F)) +ex3(wi(F)) +esr(wa(F)) = 1.

Our next goal is the statement and proof of Proposition 7, which computes e;; (wy(F)) in terms of
some curve y;; (wi(F)) in the plane. We begin by explaining the construction of y;;(wi (F)). Let w be
any word in the letters xftl, ..., xE1. We give a procedure which associates to w a curve in the plane.
Start at the point (0, 0) € R%. Each time you encounter x; in w travel right a length of 1. When xX; !
is encountered travel left. When x; or xj_1 is encountered travel up or down, respectively. Call the
resulting curve y;;(w). For instance, when w = x;x;x; x; x; 2x , the curve y;;(w) appears in Figure 9.
The assiduous reader will now compute e;;(w) = 3 using equatlon (1), which suggestively agrees with
the area of the region enclosed by y;; (w).

We are now ready to prove Proposition 7.

Proposition 7. Let w = H:}” 1x " be a word in letters xil, R xrjfl. Foranyi # j € {l,...,n},

€jj (w) = f X dy.
vij(w)

Additionally, if v;j (w) is a simple closed curve with counterclockwise orientation, then e;j(w) is the area
enclosed by y;j(w).

Proof of Proposition 7. Let w = ]—[’;1:1 va” be a word in the letters xli, cey xnil. Let |{w| = m be the

length of w. Then y;;(w) consists of a concatenation of |w| many curves, yl.}(w), e yl.’;' (w), where
¥;;(w) is constant if i, ¢ {i, j} and is a length 1 line segment traveling in a cardinal direction otherwise.
Therefore, the integral in question breaks up as

% xdy :Z<¢
vij (w) v=1 VY

xd y) .
2 (w)
If i, # j then y” (w) is either constant or parametrizes a horizontal line segment. In either case dy =0 so
that g§ vw) )X dy=0.If i, = j then Yij Y (w) is a vertical line segment parametrized by Yij @)= (x,t-€,+c¢)
with x ‘and ¢ constants and running from 0 to 1. In particular, dy = €, dt. The ﬁxed x-coordinate over

which this vertical line sits is the signed count of u < v with i, =1,

v
x = Z(S(iu, i)ey.
u=1
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Thus, in the case that i, = j, we have

1 v
f xdyz/ x-evdtzx-ev=Zé(iu,i)euev.
¥ij(w) 0 u=1

1

Combining the cases i, = j and i, # j, we see that for all v,

v
f xdy=8(iy, j) Y _ 8(iu. )euéy.
vij (w) uel

i

Summing over all values of v,

m v
$xdy=Y 80 Y 8 Dever
vij () v=1 u=1

An application of the distributive law reduces this to the definition of e;;(w) appearing in equation (1).
This completes the proof of the first claim.
The second claim follows from a standard application of Green’s theorem. (]

Example 10. We now spare a moment for a computation. For any n € N, consider the generalized
Borromean rings BR" of Figure 4. Using the C-complex of the right-hand side of Figure 4 we get clasp
words

wi(F) =x3"x3x5x,",  wa(F) =x{x;", wa(F)= (xlel)".

While one might now use equation (1) to directly compute ej2(w3), e23(w;), and e31(w,), we shall use
Proposition 7. The curve y»3(w;(F)) traces a counterclockwise n x n square so that ex3(w1) = n?. The
curve y31(w2(F)) lies in the vertical line x = 0 so that e3; (w2 (F)) = 0. Finally, y»3(w;(F)) lies in the
horizontal line y = 0 so that ej»(w3(F)) = 0. Therefore, 1123(BR") = n>.

4. The proof of Theorem 5

We now turn our attention to a lower bound on the number of clasps in a C-complex in terms of the triple
linking number. Notice that the curve y;; (w(Ly)) of Section 3 has length equal to the number of clasps
in Fi N F; plus the number of clasps in F; N F;. By Proposition 7, ﬁ/,-,-(w) xdy =e;j(w(Ly)). Thus, we
begin the proof of Theorem 5 by studying how ¢, , X dy provides a lower bound on the length of y.

For the lemma below, a polyomino curve is a closed curve in R? given by a concatenation of straight

lines of length 1 between points in Z2. The length of a curve y is denoted by ||y ||.
Lemma 11. Let y be a polyomino curve in R%. Let A = 9%, xdy. Then ||y = 2[2/]A]].

Proof. Let y be a polyomino curve in R? and let A = ggy xdy. If y is a simple closed curve, then a
standard application of Green’s theorem shows that

|A|=//1dxdy
A

is the area of the region R enclosed by y. In [6], Harary and Harborth showed that the minimum
perimeter amongst all polyominos with a fixed area |A| is given by 2[24/|A|]. As ||y | is the perimeter
of A, ||yl = 2[24/]A[], as the lemma claims.
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It remains to deal with the case that y is not simple. Recall that by assumption, y consists of a concate-
nation of vertical and horizontal line segments of length 1. Denote the rightward pointing horizontal line
segments as y{ (t), ..., y; (), the leftward pointing as y, Lo, ..., Vi £(1), the upward as y{' (1), ..., ¥, ()
and the downward as yld @,....v d(1). As y is a closed curve, the number of rightward and leftward
pointing segments must be equal to each other, as must be the number of upward and downward pointing
segments.

Up to a translation and a reparametrization preserving ||y || and . , X dy, we may assume that y is
parametrized by some (x(¢), y(¢)) such that the minimum value of x(¢) is x(0) = 0. It follows for all ¢
that 0 < x(¢) < h, where # is the number of rightward-pointing length 1 line segments in y. Breaking
the integral up as a sum,

v v h h
2) A:fxdy:Zf xdy+zj£ xdy+2y§ xdy+zj£ xdy.
y i=1 y.” i1 y.d i=1 y.’ i1 y.Z

Since yl and y; are horizontal line segments, they each have dy = 0, so that 55 xdy = 55 exdy =
Since y;* is an upward-pointing length 1 line segment, we may parametrize y;* as (x t+c) where X and c
are constant and ¢ runs from O to 1. Therefore, dy = dt and 0 < x < h. Thus, 55 xdy = fo xdt =x
and in particular 0 < 55%,, xdy < h. Similarly, —h < fyid x dy < 0. Therefore,

v v
OSE fydxfh-v and —h-vSE fydxf()_
u d

i=1 i i=1YY

Applying these bounds to the rightmost expression in (2) we see that —h-v <A <h-v, so that |A| <h-v.

Let R be an & x v rectangle and let r be the curve traversing its boundary counterclockwise. As r is
made up of the same number of length 1 line segments as y, ||y| = ||7]|. Since R is a polyomino of
area h - v, [6] applies and ||7| > 212vh-v]. Summarizing,

Iyl = lirl = 212vh - 01 = 212/ A]1.

This completes the proof. U
Ifw= ]_[:)" | xe" is a word in xftl, R il for which the signed counts of the x; and the x; are both
+1

Zero, then lvij (w)|| is the same as the length of the word w after deleting all letters other than x;
and xT 7 !, while ¢;; j(w) = fy,-,- w) Y dx by Proposition 7. Thus, Lemma 11 has the following corollary.

:l:l

Corollary 12. Let w = ]_[: | X f" be a word in x; ..,x,jfl. Fix somei # j € {1,...,n} and assume

the signed counts of the x; and the x ; are both zero. If eij(w) = A, then |w| > 2[2/|A[].
We are now ready to prove Theorem 5, which gives a lower bound on C(L) in terms of w;;x(L).

Theorem 5. Let L = LU Ly U L3 be a 3-component link with vanishing pairwise linking numbers. Then
C(L) = 2124/|pm123(L)]/3 1.

Proof. Let L be a 3-component link with vanishing pairwise linking numbers and F be a C-complex
bounded by L. Let C(F) be the number of clasps between the components of F. Let w; = w;(F),
wy = wy(F) and w3 = w3 (F) be the resulting clasp words. Each clasp corresponds to a letter in two of
these words, and so

2C(F) = lwi| + |wz| + |ws].
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Let e; = ex3(wy), eo = e31(w7), and e3 = ejp(w3). Then w3(L) = e; + 3 + e3. Assume without loss
of generality that |e;| < |e2| < |es|. Then it must be that |e3]| > |u123(L)|/3. Corollary 12 concludes that

lw3| = 212/]e3]1 = 2[24/|p123(L)1/31.
Now, each letter of w3 corresponds to either a clasp in F3 N F} or a clasp in F3 N F,. Each of these
clasps produces a letter in w; or in wy. As a consequence |w3| < |w;| + |wy|. Putting this together,

2C(F) = |wi] + |wa] + [w3| = 2[ws| = 412/ [n123(L)]/3 1.
The proof is now completed by dividing by 2. (I

References

[1] D. Cimasoni, “A geometric construction of the Conway potential function”, Comment. Math. Helv. 79:1 (2004), 124—146.

[2] D. Cimasoni and V. Florens, “Generalized Seifert surfaces and signatures of colored links”, Trans. Amer. Math. Soc. 360:3
(2008), 1223-1264.

[3] D. Cooper, Signatures of surfaces in 3-manifolds with applications to knot and link cobordism, Ph.D. thesis, Warwick
University, 1982, available at http:/library.msri.org/nonmsri/cooper/.

[4] D. Cooper, “The universal abelian cover of a link”, pp. 51-66 in Low-dimensional topology (Bangor, 1979), London Math.
Soc. Lecture Note Ser. 48, Cambridge Univ. Press, 1982.

[5] C. W. Davis, M. Nagel, P. Orson, and M. Powell, “Triple linking numbers and surface systems”, 2017. arXiv 1709.08478
[6] F. Harary and H. Harborth, “Extremal animals”, J. Combin. Inform. System Sci. 1:1 (1976), 1-8.

[7] B. Mellor and P. Melvin, “A geometric interpretation of Milnor’s triple linking numbers”, Algebr. Geom. Topol. 3 (2003),
557-568.

[8] J. Milnor, “Isotopy of links”, pp. 280-306 in Algebraic geometry and topology: a symposium in honor of S. Lefschetz,
Princeton Univ. Press, 1957.

[9] D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Houston, TX, 1990. Corrected reprint of
the 1976 original.

[10] T. Shibuya, “Some relations among various numerical invariants for links”, Osaka Math. J. 11 (1974), 313-322.

JONAH AMUNDSEN: amundsjj3573 @uwec.edu
Department of Mathematics, University of Wisconsin—Eau Claire, Eau Claire, WI, United States

ERIC ANDERSON: andersew1951 @uwec.edu
Department of Mathematics, University of Wisconsin—Eau Claire, Eau Claire, WI, United States

CHRISTOPHER WILLIAM DAVIS: daviscw @uwec.edu
Department of Mathematics, University of Wisconsin—Eau Claire, Eau Claire, WI, United States

DANIEL GUYER: guyerdm7106@uwec.edu
Department of Mathematics, University of Wisconsin—Eau Claire, Eau Claire, WI, United States

RMJ — prepared by :'msp for the
Rocky Mountain Mathematics Consortium


https://doi.org/10.1007/s00014-003-0777-6
https://doi.org/10.1090/S0002-9947-07-04176-1
http://library.msri.org/nonmsri/cooper/
http://arxiv.org/abs/1709.08478
https://doi.org/10.2140/agt.2003.3.557
http://projecteuclid.org/euclid.ojm/1200757391
mailto:amundsjj3573@uwec.edu
mailto:andersew1951@uwec.edu
mailto:daviscw@uwec.edu
mailto:guyerdm7106@uwec.edu
http://msp.org
https://rmmc.asu.edu

	1. Introduction
	1.1. Questions

	2. C-complexes and the proof of 0=theorem.41=Theorem 2
	3. Triple linking numbers via clasps and polyominos
	4. The proof of 0=theorem.91=Theorem 5
	References

